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Figure 2-Results of simultaneous nonlinear least-squares fit- 
ting to Eq. 5 of terminal auerage capillary blood alcohol concen- 
trations of eight subjects giuen four different doses. The solid line 
giues the model-predicted concentrations. 

centration data obtained in six subjects given alcohol 
by constant-rate intravenous infusion) yields an esti- 
mate of 0.124 g of alcohol/kg/hr for the maximum 
elimination rate of alcohol in a normal male. For a 
70-kg male, this is equivalent to 8.7 g of alcohol/hr. 

In toxicology cases, where one wishes to estimate 
the future time course of blood alcohol concentra- 
tions, it is still valid to extrapolate an established 
pseudolinear decline in blood alcohol concentration 
down to about 0.2 mg/ml. However, this can only be 
done in individual patients who ingest a given dose of 
alcohol. It is invalid to predict the slope of the pseu- 
dolinear decline without a great deal of data and to 
compare slopes reported by two or more investigators 
who administer different doses of alcohol to different 
subjects. The slope of the pseudolinear decline is a 
function of CO, V,, and K,, as indicated by Wagner 
(11) and the data in this report. 

This work conclusively demonstrates that zero- 
order kinetics are inappropriate for describing the 
elimination of alcohol in humans. The slope of the 
pseudolinear decline should not be utilized as a mea- 
sure of metabolism rate of alcohol as it has been used 
in the past (1,2,4-7). The rate of metabolism of alco- 
hol is described more accurately by the V ,  and K ,  
values and Eq. 2. 
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Analysis of Diffusion through 
Concentric Right Circular 
Cylinders and Concentric Spheres 

Keyphrases Diffusion-concentric right circular cylinders and 
concentric spheres, models for drug release from tubular devices, 
cylindrical systems, and vaginal or GI lumen Drug release-tu- 
bular devices, cylindrical systems, and vaginal or GI lumen, con- 
centric right circular cylinders and concentric spheres as models 

T o  the Editor: 

We recently have been modeling several diffusion- 
al systems involving diffusion through a series (two 
or more) of concentric right circular cylinders. The 
modeling encompasses ( a )  drug release from tubular 
devices, particularly in the presence of fluid bound- 
ary layers; ( b )  drug release from cylindrical systems 
containing drugs suspended in polymeric matrixes 
(1); (c) absorption of drugs from the vaginal lumen 
(2) or the lumen of the intestine (3), each of which, to 
a first approximation, may be considered a cylindri- 
cal membrane; and ( d )  combinations of a, b, and c. 

A general phenomenon associated with all geomet- 
rical systems of this type, when diffusion is from the 
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core of the cylinder to some external surface, is dilu- 
tion along the radial vector as the concentration gra- 
dient develops because, for each unit incremental in- 
crease in radius, Ar, a larger and larger differential 
volume, AV, is associated with the prescribed con- 
centric tubular cylinder (AV lying between the hol- 
low cylinder prescribed by ri and ri + Ar).  In the 
steady state, the net flux through every concentric 
cylindrical plane is constant. However, since the in- 
cremental volume elements are growing to  the third 
power of the radius as the radius is extended, the 
concentration gradient in the cylindrical case is non- 
linear and effectively more severe than that generat- 
ed in the planar case. Thus, the steady-state flux 
through a hollow tube of thickness Ar is greater than 
the steady-state flux of the same diffusant through a 
comparably thick planar slab of the same composi- 
tion and area’. 

Yet, often, cylindrical geometrical influences are 
ignored and cylindrical membranes are “flattened” in 
our treatments. For example, intestinal absorption is 
often treated as a planar process rather than as ab- 
sorption through a cylindrical or “tubular” tissue 
barrier. Intuitively, this approach seems reasonable 
because the involved tissue “thickness” is small rela- 
tive to the radius of the GI lumen. The purpose of 
this communication, in addition to providing general 
equations for steady-state diffusion through concen- 
tric cylindrical barriers in series, is t o  quantitate the 
conditions where planarization of the diffusional pro- 
cess is mathematically appropriate. 

A general approach to treating cylindrical barriers 
in series can be illustrated by considering the sim- 
plest such system, two concentric hollow cylindrical 
membranes. Figure 1 is an illustration of several such 
“membranes” in series. The situation specifically in- 
volves diffusion from a solution within the tubular 
lumen through the cylindrical membrane, deter- 
mined by radii rl and r2, and then through the con- 
tiguous and concentric tubular region, determined by 
radii r2 and r3. For the moment, we shall neglect dif- 
fusional resistance contributions of interfaces, al- 
though they could be treated as additional diffusion- 
al resistances in series. 

For simplicity of treatment, it is assumed that 
there is a constant luminal concentration of the pene- 
trant, Co, at  all times and that the diffusion is into an 
external sink (the outside concentration is zero at  all 
times). Under these conditions, a true steady state 
develops in time and the flux is invariant through 
every concentric cylindrical plane. I t  also is assumed 
that the concentric cylinders are of length H and 
that there is no end diffusion. 

Fick’s first law states2: 
dC J = -AD (&) 

Radial diffusion in the opposite direction, to the center of the cylinder, 
is accompanied by a “concentration” relative to a planar system. For the 
comparison, one can take the inner cylindrical area, associated with r,, as 
the severest test of the statement (see Table I).  

The flux here is defined in terms of total surface area rather than on a 
per unit area basis. This form is useful in characterizing the mass current 
from nonplanar geometrical barriers. 

where J is the flux, A is the area, D is the diffusivity, 
and dC/dr  is the concentration gradient. The lateral 
area of a right circular cylinder is given by: 

A = 2rrH (Eq. 2) 
where r is the radius, and H is the cylinder’s length. 
Combining Eqs. 1 and 2 produces: 

(Eq. 3) 

as the distance, x ,  is measured along a radial line. In 
the steady state, J is constant through every concen- 
tric cylindrical plane. In the first hollow cylindrical 
shell of a series of cylindrical shells: 

and: 

(Eq. 5) 

which may be integrated from C1’ to C2 and from rl 
to r2 to yield3: 

(Eq. 6) 

The second concentric cylindrical “membrane” may 
be similarly treated: 

(Eq. 7) 

The assumption of a sink condition at the outer 
boundary leads to C3 = 0 at  all times and: 

(Eq. 8 )  

To combine Eqs. 6 and 8, one has to adopt a uni- 
form, continuous “concentration” (activity) scale. 
This is most conveniently done with respect to Co, 
the core concentration, using partition coefficients. 
Let Co/Cl‘ = K I  and C2/C2’ = K I I .  Then C1’ = Co/Kr 
and CZ’ = C ~ / K I I .  The latter relationship, when in- 
corporated in Eq. 8, yields for Cp: 

(Eq. 9) 

which, when substituted into Eq. 6 along with the 
other partitioning relationship, yields for the flux: 

2nHD1DpCo 
J =  (Eq. 10) 

(:) DzKl In (:) + D ~ K I K I I  In 

The product K I K I I  is itself a distribution coeffi- 
cient and is COCZ/C~‘C~‘.  If the system proceeds to a 
true equilibrium, this quantity, being the product of 
two constants, remains constant (to the extent that 
partitioning is concentration insensitive) and, at true 
equilibrium, C1’ = C2 and K I K I I  = Kz  = (Co/C2’). 
But this is simply the equilibrium distribution coeffi- 

A convention has heen adopted here in which subscript numbers f o r  ron- 
centrations at interfacial boundaries are numbered with respect to the order 
of the radii, the inner radius being r l ,  the next longer radius being r2. P ~ C  

There are, of course, two surface concentratinns at each interface, one nn 
each side. The inner surface concentration is simply designated by the radi- 
us subscript, while the surface concentration in the material on the outer 
side of the interface is designated by a prime superscript in addition to the 
radius subscript. Thus, C,’ is the outer surface concentration associated 
with the interface found at radius rl .  
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cient of the permeant between the core phase and the 
material comprising the outer cylindrical membrane. 
Extending the relationship to additional cylindrical 
shells in series shows that only a singular partition 
coefficient need be considered as the diffusant enters 
a new phase, and this coefficient is the equilibrium 
partition coefficient between the core and that par- 
ticular phase. 

It is easy to show, by repetitively using these math- 
ematical operations, that diffusion through multiple 
concentric cylindrical barriers in series in the steady 
state mathematically conforms to4: 

The applicability of Eq. 16 now can be quantitat- 
ed. The exact solutions of the function In (1 + X )  
along with solutions using both of the function ap- 
proximations are listed in Table I for several ratios of 
ri+Jri. The table also gives the percentage deviations 
from the exact solution. I t  can be seen that the “long 
approximation” gives very satisfactory results (<I% 
deviation) at  a radial ratio of 1.1 or a Ar 10% as large 
as ri. The short approximation has an inherent 5% 
error at this ratio. When Ar is only 1% of r;, the short 
approximation becomes quite satisfactory because 
the error is only 0.5%. In fact, the percentage error in 

This form also can be applied to some quasi-steady- 
state problems upon substitution of AC = [CO - 
C,+I] for CO (5). 

We can now consider the conditions whereby a cy- 
lindrical system may be functionally planar. It can be 
seen from Eqs. 6 and 7 that, for any concentric tubu- 
lar barrier, say the ith: 

0%. 12) Z*HD,(C,’ - Ct+1) J =  
In (y)  

Furthermore, any r,+ 1 may be put in terms of r, and a 
differential radius: 

r,+l = rL + Ar (Eq. 13) 

and, thus: 

(Eq. 14) 2*HD,(Ct’ - C,+I) J =  
a In (1 +X) 

The terms C,’ and C,+l are the inner and outer 
“membrane” surface concentrations, respectively3. 

The natural logarithmic term in Eq. 14 is in the 
general form In (1 + X), where X is obviously Arlr, .  
I t  can be shown that the function In (1 + X) expands 
to: 

which, as X takes a value less than one, is first well 
approximated by X - ( X 2 / 2 )  and then, as X be- 
comes sufficiently small, is simply approximated by 
X itself. Therefore, when using the simple but less 
exact approximation, in the limit that Arlri << 1: 

or: 

(Eq. 16b) J =  2*Hr,D,(C,‘ - C,+d 
3r  

which is a planar form of the flux equation where the 
area, A ,  is 27rriH and the laminate thickness is Ar.  

Barrer (4) presented a general derivation for concentric cylindrical bar- 
riers in series using a concise, alternative mathematical approach. The two 
forms, Barrer’s and Eq. 1 1 ,  appear different but can be shown to be inter- 
convertable with proper manipulation and the use of a common set of sym- 
bols. 

using the short approximation converges to half the 
percentage increase of ri+l over ri. Thus, the planar 
form gives a 0.5% error when Ar is 1% of ri, a 0.05% 
error when Ar is 0.1% of ri, and so on. The long ap- 
proximation provides virtually exact solutions as the 
radial ratio approaches one. 

In vaginal and intestinal absorption, one is dealing 
with reasonably cylindrical cavities which have radii 
measured in whole centimeters and membranes and 
boundary layer barriers of estimated thicknesses 
ranging from fractional to  whole millimeters. The 
upper limit on the radial ratio experienced in these 
circumstances seems to be about 1:l and should be 
considerably less in most cases. Thus, planarization 
of the absorption processes through these tissues is 
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Figure 1-Series of concentric cylinders as a drug delivery device 
in a biological setting. The “thicknesses” of the respective lami- 
nates are designated by h values. Each h can be described in 
terms o f a  differential radius, Ir. 
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Table I-Comparison of Exact and Approximate Solutions of the Function In 1 + - ( :,r) 
Solution b y  Second 

Solution by First Approximation Approximation 

a’- (3,2 - Deviationb, 

- 
A r  

Deviationb, ’76 ‘i % 
Rad iu so Increase in Ink + ;) 

Ratio r i+ l  over ri ,  % ‘ i  

1 . 5  50 0.40547 0.375 -7.51 
1.1 10 0.095310 0.095 -0.325 

0.048790 0.04875 -0.082 1.05 5 
0.0099503 0.00995 -0.0030 1.01 1 

1.005 0.5 0.00498754 0.0049875 -0.008 
1.001 0.1 0.000999500 0.0009995 0 

U T h i s  is the same as 1 + ( A r i r i ) .  b Percent deviation of approximate solution with respect to exact solution. 

accompanied by a small and, in most cases, a negligi- 
ble error. 

However, in release of drugs through tubular mem- 
branes (drug delivery devices) where radii are in frac- 
tional centimeters (a 0.5-cm diameter could be con- 
sidered typical) and tubing wall thicknesses approach 
whole millimeters (a Ar of 1 mm might be typical), 
planarization of the treatment introduces large errors 
in estimating diffusional parameters or in character- 
izing flux as a function of tubing thickness from 
known diffusivities and partition coefficients, etc. In 
these situations, the geometrical factor has to be ac- 
counted for in the mass transport characterization. 
Because of the remarkably simple relationship be- 
tween the error of approximation and the radial 
ratio, it is easy to determine if one can employ the 
simplified form. 

A similar analysis can be applied to concentric 
spheres. Barrer (4) gave a general form for the per- 
meability coefficient of multiple concentric spherical 
barriers. Alternatively, the procedure illustrated here 
can be employed to develop a mathematical model (6, 
7 ) .  In any case, one obtains for the ith spherical lami- 
nate: 

1 1 _ -  
r, rr + Ar 

Table 11-Comparison of Exact and Approximate Solutions 
for Concentric Spheres at a Constant Radial Ratio, 1.5 

Ar 
- Devia- 

ri ri + A r  A r  ri ri + A r  riz tion, % 

1 1 .5  0 . 5  0.02083 0.5 50 
2 3 1 0.1667 0.25 50 
4 6 2 0.0833 0.125 50 
8 12 4 0.04167 0.0625 50 

16 24 8 0.02083 0.0313 50 

1 1 - - __- 

Table 111-Comparison of Exact and Approximate Solutions 
for Concentric Spheres at Varying Radial Ratio 
for a Constant ri Value of 1 

ar Radius 
- Increase, Devia- 

r; + A r  A r  ri ri + A r  ria % tion, % 

1 - ___ 1 
- 

1 . 5  0.5 0.3333 0.5 50 50 
1.1 0.1 0.090909 0.1 10 10 
1.05 0 .05  0.047619 0.05 5 5 
1.01 0.01 0.009901 0.01 1 1 
1.005 0.005 0.0049752 0.005 0.5 0 .5  

0.5 
0.1 
0.05 
0.01 
0.005 
0.001 

23.3 
4.93 
2.48 
0.50 
0.25 
0.050 

where ri + Ar = ri+1. The denominator can also be 
written: 

(Eq. 18) 

and it can be seen by inspection that when Ar be- 
comes very small, the function approaches Arlri2. 
When substituted into Eq. 17, this approximation 
gives a planar form of the flux equation of area 4xri2 
and thickness Ar. 

An analysis of the cylindrical case appears in Ta- 
bles I1 and 111. In Table 11, the function Arlri2 is 
compared with the exact function ( l l r i )  - l / ( r i  + A r )  
for varying r values but for a constant 50% increase in 
ri+l over ri. Unlike the cylindrical case, the absolute 
magnitude of ri in addition to the ratio ri+llri is a de- 
terminant of the quantitative value of the function. 
However, the percentage error at a given ratio re- 
mains constant. Moreover, the percentage error is the 
same as the percentage increase of Ar over ri (inspec- 
tion of Eqs. 17 and 18 indicates that this is to be ex- 
pected). The relationships are further illustrated in 
Table 111, where the radial ratio has been varied but 
ri has been held constant a t  1. 

These equations and their analysis indicate where 
one can simplify the characterization of absorption of 
drugs and nutrients by cultured cells and microorga- 
nisms, of uptake and release mechanisms of emulsion 
droplets in the presence of diffusion layers and inter- 
facial barriers, and of release of drugs from spherical 
capsules and other spherical devices. 

1 -  Ar -- 1 
r, r ,  + Ar rL(ri  + Ar)  
_ -  
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X l  X l  x2  x3  x3 
MOLE FRACTION 

Consistency Relations in Solid Solution 
Melting-Point Diagrams 

Keyphrases 0 Solid solution systems-melting-point diagrams, 
consistency relations, thermodynamic analysis Melting-point di- 
agrams-solid solution systems, consistency relations 

To the Editor: 
Solid solution systems have been of pharmaceuti- 

cal interest in recent years (1-7). The thermodynam- 
ic basis for solid solution systems is given in standard 
texts on solid-state physics or chemistry; e.g., Zhda- 
nov (8) listed the expression for the free energy, F ,  at  
temperature T O K  of a system containing x mole 
fraction A and (1 - x )  mole fraction B as: 
F(x, T) = K(T)  + 0.5NZ[x2V,,,4 + (1 - x)’VHfi + 

2x(1- x)V.,R] + RT[x In x + (1 - x)  In (1 - x)] (Eq. 1) 

where: 

N = Avogadro’s number 
Z = coordination number 

Vn.4 = interaction energy between two A mole- 

VBH = interaction energy between two B mole- 

V A I j  = interaction energy between an A and a B 

cules 

cules 

molecule 

K ( T )  = J,’ c dT - T S’ 
capacity 

dT, where c = heat 

The assumptions made here are that: ( a )  only 
nearest neighbor interactions are considered, ( b )  
Stirling’s formula is applicable, and ( c )  the heat ca- 
pacities for the two solids and for the solid solutions 
are identical. This last assumption is made in all pub- 
lished treatments [e.g., Zhdanov (8) and Ashbee (9)] 
and is implicit in the use of the terminology K ( T )  
rather than K ( T ,  x ) .  This assumption may not neces- 
sarily be a good one (as evidenced by a great deal of 
thermoanalytical work) but is, nevertheless, made 
here. 

A typical plot of F as a function of composition x 
a t  temperatures TI > Tg > T3 > Tq, where Tg is the 
eutectic temperature, is shown in Fig. 1. The curves 
in Fig. 1 are based on 2VAB > VAA + VBB (9). The 
corresponding binary melting-point diagram is shown 
in Fig. 2. 

‘ T  

Figure 1-Free energy versus mole fraction of a binary mixture 
forming a random solid solution. The indicated temperatures are 
of the rank TI > TP > T3 > Tq. The minima correspond to solid 
solution compositions at  the indicated temperatures (at  which 
the mixture is solid). In this example, TP could be the eutectic 
temperature and Ts could be room temperature. 

There are three extrema (at compositions XI, x2, 

and x3) when solid solutions exist, the two minima 
(XI and x3) being at the compositions of the solid so- 
lutions at the eutectic temperature, Tg. That the 
maximum coincides with the eutectic composition is, 
however, not thermodynamically obvious. The values 
for XI, xg, and x3 satisfy the first derivative equation 
of Eq. 1 when equated to zero, i.e.: 

= N Z { x V , ,  - (1-  X ) V H R  + (1 - 2X)V,\RJ + 
ax T 

NkT In (x/( l  - x)\ = 0 (Eq. 2 )  

where k is Boltzmann’s constant. Inserting x = XI, xg, 

and x3 then yields three equations with three un- 
knowns: 

x1v,4,  + ( X I  - 1 ) V m  + (1 - 2XI)VAH = 

kT -- In [ x , / ( l  - X I ) ]  (Q. 3a)  

x,v,4,4+(x2 - l ) v H B + ( l -  2X,)V,B = 

kT 
Z -- In [ x p / ( l  - x,)I (E4.36) 

x.Iv,., +(x, ,  - 1)VBH + (1 - 2X,)V,,, = 

-? In [ x . / ( l  - x,)] (Q. 3c)  

where VAA, VBB, and VAB are the unknowns. There 
is no unique solution to these three equations, be- 
cause the determinant D = I x i ,  (x; - l), (1 - 2xi ) I  
equals zero for all values of x i ;  i e . ,  there is a linear 
dependence among XI, xg, and x3. If the coefficients 
of dependence are denoted a1 and a%, it follows from 
Eqs. 3a-3c that: 

(Eq. 4a) a , x *  + a 2 x 2  = x j  

aI(xl-1) + ~ y z ( ~ 2 - 1 )  = ( ~ : j - l )  (Eq.46) 

a , ( l -  2XI )  + ap(l - 2x1) = 1 - %r. ,> ( E q . 4 ~ )  

The solutions to Eqs. 4 a - 4 ~  are: 

a ,  = ( X Y  - x:J/(x*-xl) (Eq. 5 )  
a,= (xa -x , ) / (X , -X , )  (Eq. 6 )  
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